Linear Algebra

[KOMS120301] - 2023/2024

15.2 - Gram-Schmidt & QR-Decomposition

Dewi Sintiari

Computer Science Study Program
Universitas Pendidikan Ganesha

Week 15 (December 2023)

Learning objectives

After this lecture, you should be able to:

- 1. explain the concepts of orthogonal set and orthonormal set;
- 2. explain the procedure of Gram-Schmidt;
- perform the procedure of Gram-Schmidt to get an orthonormal basis;
- explain the procedure of QR-decomposition;
- 5. find a QR-decomposition of a matrix.

Part 1: Orthogonal and orthonormal sets

Orthogonal and orthonormal sets

Let S be a set of two or more vectors in a real inner product space. Then:

- *S* is said to be orthogonal if all pairs of distinct vectors in the set are orthogonal.
- S is said to be orthonormal if S is orthogonal and $\forall v \in S$, ||v|| = 1.

Why do we need an orthogonal set or an orthonormal set?

Reference: https://www.youtube.com/watch?v=SWbis2zWIvo

Task: Find an example that shows the importance of an orthogonal or an orthonormal set in Linear Algebra.

Example 1: Orthogonal sets

Given vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = (0, 1, 0), \quad \mathbf{v}_2 = (1, 0, 1), \quad \mathbf{v}_3 = (1, 0, -1)$$

with Euclidean inner product. Is the set $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ orthogonal?

Example 1: Orthogonal sets

Given vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = (0, 1, 0), \quad \mathbf{v}_2 = (1, 0, 1), \quad \mathbf{v}_3 = (1, 0, -1)$$

with Euclidean inner product. Is the set $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ orthogonal?

Solution:

Show that $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0$, $\langle \mathbf{v}_1, \mathbf{v}_3 \rangle = 0$, and $\langle \mathbf{v}_2, \mathbf{v}_3 \rangle = 0$.

Example 2: Constructing an orthonormal set from an orthogonal set

From the previous example, we see that $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal set. How to construct an orthonormal set out of it?

• The Euclidean norms of the vectors:

$$\|\textbf{v}_1\|=1,\ \|\textbf{v}_2\|=\sqrt{2},\ \|\textbf{v}_3\|=\sqrt{2}$$

• Normalizing \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 yields:

$$\begin{aligned} \mathbf{u}_1 &= \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}, \quad \mathbf{u}_2 &= \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right), \\ \mathbf{u}_3 &= \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right) \end{aligned}$$

Verify that

$$\langle \mathbf{u}_1, \mathbf{u}_2 \rangle = \langle \mathbf{u}_1, \mathbf{u}_3 \rangle = \langle \mathbf{u}_2, \mathbf{u}_3 \rangle = 0,$$
 and
$$\|\mathbf{v}_1\| = 1, \ \|\mathbf{v}_2\| = 1, \ \|\mathbf{v}_3\| = 1$$

Hence, $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthonormal set.

Exercises

Part 2: The Gram-Schmidt Process

Importance of orthogonal basis & orthonormal basis

Theorem (Orthogonal basis & orthonormal basis)

1. If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is an orthogonal basis for an inner product space V, and if u is any vector in V, then:

$$\mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 + \frac{\langle \mathbf{u}, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{u}, \mathbf{v}_n \rangle}{\|\mathbf{v}_n\|^2} \mathbf{v}_n$$

2. If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is an orthonormal basis for an inner product space V, and if u is any vector in V, then:

$$\mathbf{u} = \langle \mathbf{u}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{u}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \cdots + \langle \mathbf{u}, \mathbf{v}_n \rangle \mathbf{v}_n$$

Does an orthonormal basis always exist?

Theorem

Every nonzero finite-dimensional inner product space has an **orthonormal basis**.

The Gram-Schmidt Process (1)

The Gram-Schmidt process is the step-by-step construction of an orthogonal (or orthonormal) basis.

The Gram-Schmidt Process

To convert a basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r\}$ into an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$, perform the following computations:

$$\begin{split} \textit{Step 1.} \ \ v_1 &= u_1 \\ \textit{Step 2.} \ \ v_2 &= u_2 - \frac{\langle u_2, v_1 \rangle}{\|v_1\|^2} v_1 \\ \textit{Step 3.} \ \ v_3 &= u_3 - \frac{\langle u_3, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle u_3, v_2 \rangle}{\|v_2\|^2} v_2 \\ \textit{Step 4.} \ \ v_4 &= u_4 - \frac{\langle u_4, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle u_4, v_2 \rangle}{\|v_2\|^2} v_2 - \frac{\langle u_4, v_3 \rangle}{\|v_3\|^2} v_3 \\ &\vdots \end{split}$$

(continue for r steps)

Optional Step. To convert the orthogonal basis into an orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_r\}$, normalize the orthogonal basis vectors.

The Gram-Schmidt Process (2)

Example 1: Gram-Schmidt process

Given vectors in \mathbb{R}^3 :

$$\mathbf{u}_1 = (1, 1, 1), \ \mathbf{u}_2 = (0, 1, 1), \ \mathbf{u}_3 = (0, 0, 1)$$

- 1. Transfom the basis vectors into an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
- 2. Normalize the orthogonal basis to obtain an orthonormal basis $\{\mathbf{q}_1,\mathbf{q}_2,\mathbf{q}_3\}$.

Example 1 solution: Gram-Schmidt process

$$\mathbf{u}_1 = (1,1,1), \ \mathbf{u}_2 = (0,1,1), \ \mathbf{u}_3 = (0,0,1)$$

Step 1.
$$\mathbf{v}_1 = \mathbf{u}_1 = (1, 1, 1)$$

Step 2.
$$\mathbf{v}_2 = \mathbf{u}_2 = \text{proj}_{W_1} \mathbf{u}_2 = \mathbf{u}_2 - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1$$
$$= (0, 1, 1) - \frac{2}{3} (1, 1, 1) = \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3} \right)$$

Step 3.
$$\mathbf{v}_3 = \mathbf{u}_3 - \text{proj}_{W_2} \mathbf{u}_3 - \frac{\langle \mathbf{u}_3, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_3, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2$$

$$= (0, 0, 1) - \frac{1}{3} (1, 1, 1) - \frac{1/3}{2/3} \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3} \right) = \left(0, -\frac{1}{2}, \frac{1}{2} \right)$$

Hence,

$$\textbf{v}_1 = (1,1,1), \ \textbf{v}_2 = \left(-\frac{2}{3},\frac{1}{3},\frac{1}{3}\right), \ \textbf{v}_3 = \left(0,-\frac{1}{2},\frac{1}{2}\right)$$

Example 1 solution: Normalization

From the Gram-Schmidt process, we get:

$$\textbf{v}_1 = (1,1,1), \ \textbf{v}_2 = \left(-\frac{2}{3},\frac{1}{3},\frac{1}{3}\right), \ \textbf{v}_3 = \left(0,-\frac{1}{2},\frac{1}{2}\right)$$

Hence,

$$\|\mathbf{v}_1\| = \sqrt{3}, \|\mathbf{v}_2\| = \frac{\sqrt{6}}{3}, \|\mathbf{v}_3\| = \frac{1}{\sqrt{2}}$$

So, an orthonormal basis for \mathbb{R}^3 is:

$$\begin{split} \mathbf{q}_1 &= \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \quad \mathbf{q}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right), \\ \mathbf{q}_3 &= \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|} = \left(0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \end{split}$$

Extending orthogonal/orthonormal sets to orthogonal/orthonormal bases

Theorem

If W is a finite-dimensional inner product space, then:

- 1. Every orthogonal set of nonzero vectors in W can be enlarged to an orthogonal basis for W.
- 2. Every orthonormal set in W can be enlarged to an orthonormal basis for W.

Exercises

Part 3: QR-Decomposition

Concept of QR-decomposition (1)

Problem

If:

- A is an m × n matrix with linearly independent column vectors,
- Q is the matrix that results by applying the Gram-Schmidt process to the column vectors of A,

what relationship (if any) exists between A and Q?

Concept of QR-decomposition (1)

Problem

If:

- A is an m × n matrix with linearly independent column vectors,
- Q is the matrix that results by applying the Gram-Schmidt process to the column vectors of A.

what relationship (if any) exists between A and Q?

Let:
$$A = [\mathbf{u}_1 \mid \mathbf{u}_2 \mid \cdots \mid \mathbf{u}_n]$$
 and $Q = [\mathbf{q}_1 \mid \mathbf{q}_2 \mid \cdots \mid \mathbf{q}_n]$

By Theorem "Orthogonal basis & orthonormal basis", it can be written:

$$\begin{aligned} \mathbf{u}_1 &= \langle \mathbf{u}_1, \mathbf{q}_1 \rangle \mathbf{q}_1 + \langle \mathbf{u}_1, \mathbf{q}_1 \rangle \mathbf{q}_1 + \dots + \langle \mathbf{u}_1, \mathbf{q}_n \rangle \mathbf{q}_n \\ \mathbf{u}_2 &= \langle \mathbf{u}_2, \mathbf{q}_1 \rangle \mathbf{q}_1 + \langle \mathbf{u}_2, \mathbf{q}_1 \rangle \mathbf{q}_1 + \dots + \langle \mathbf{u}_2, \mathbf{q}_n \rangle \mathbf{q}_n \\ \vdots &\vdots &\vdots &\vdots \\ \mathbf{u}_n &= \langle \mathbf{u}_n, \mathbf{q}_1 \rangle \mathbf{q}_1 + \langle \mathbf{u}_n, \mathbf{q}_1 \rangle \mathbf{q}_1 + \dots + \langle \mathbf{u}_n, \mathbf{q}_n \rangle \mathbf{q}_n \end{aligned}$$

Concept of QR-decomposition (2)

This can be written in matrix:

$$[\mathbf{u}_1 \mid \mathbf{u}_2 \mid \cdots \mid \mathbf{u}_n] = [\mathbf{q}_1 \mid \mathbf{q}_2 \mid \cdots \mid \mathbf{q}_n] \begin{bmatrix} \langle \mathbf{u}_1, \mathbf{q}_1 \rangle & \langle \mathbf{u}_2, \mathbf{q}_1 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_1 \rangle \\ \langle \mathbf{u}_1, \mathbf{q}_2 \rangle & \langle \mathbf{u}_2, \mathbf{q}_2 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_2 \rangle \end{bmatrix}$$

$$\vdots \qquad \vdots \qquad \ddots \qquad \vdots \\ \langle \mathbf{u}_1, \mathbf{q}_n \rangle & \langle \mathbf{u}_2, \mathbf{q}_n \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_n \rangle \end{bmatrix}$$

$$A \qquad = \qquad Q \qquad \qquad R$$

Since \mathbf{q}_j is orthogonal to $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{j-1}$, we have:

$$R = \begin{bmatrix} \langle \mathbf{u}_1, \mathbf{q}_1 \rangle & \langle \mathbf{u}_2, \mathbf{q}_1 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_1 \rangle \\ 0 & \langle \mathbf{u}_2, \mathbf{q}_2 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{q}_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \langle \mathbf{u}_n, \mathbf{q}_n \rangle \end{bmatrix}$$

This is called the QR-decomposition of matrix A.

Concept of QR-decomposition (3)

Theorem

If A is an $m \times n$ matrix with linearly independent column vectors, then A can be factored as:

$$A = QR$$

where Q is an $m \times n$ matrix with orthonormal column vectors, and R is an $n \times n$ invertible upper triangular matrix.

Remark.

- $Q = [\mathbf{q}_1 \mid \mathbf{q}_2 \mid \cdots \mid \mathbf{q}_n]$ can be obtained from Gram-Schmidt process.
- The matrix R is the matrix as defined previously, which is an upper-triangular matrix whose entries are $\langle \mathbf{u}_i, \mathbf{q}_j \rangle$ for some $i, j \in \{1, 2, \dots, n\}$.

Example: Finding QR-decomposition

Find a QR-decomposition of:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Solution of example

Solution:

Step 1. Find the column vectors of A:

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Step 2. Apply the Gram-Schmidt process. This gives orthonormal vectors:

$$\textbf{v}_1 = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}, \ \textbf{v}_2 = \begin{bmatrix} -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}, \ \textbf{v}_3 = \begin{bmatrix} 0 \\ -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

Step 3. Define matrix *R*:

$$R = \begin{bmatrix} \langle \textbf{u}_1, \textbf{q}_1 \rangle & \langle \textbf{u}_2, \textbf{q}_1 \rangle & \langle \textbf{u}_3, \textbf{q}_1 \rangle \\ 0 & \langle \textbf{u}_2, \textbf{q}_2 \rangle & \langle \textbf{u}_3, \textbf{q}_2 \rangle \\ 0 & 0 & \langle \textbf{u}_3, \textbf{q}_3 \rangle \end{bmatrix} \ = \ \begin{bmatrix} \frac{3}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Solution of example (cont.)

Hence the QR-decomposition is:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{3}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$A = Q \qquad R$$

Exercises

1. Write the step-by-step procedure of computing QR-decomposition of a matrix.

2

to be continued...